Click here to Skip to main content
65,938 articles
CodeProject is changing. Read more.
Articles
(untagged)

Interpolation with Polynomials and Splines

0.00/5 (No votes)
20 Oct 2005 1  
A port of the Java sample project written by Tobias von Petersdorff
Sample Image - SplineInterpolation.jpg

Introduction

First of all, take a look here, where Tobias von Petersdorff has published his interpolation form written in Java.

Have you tried to find some sample code written in C# that helps you to draw a Spline? I've tried with no success.

This is a port of his sample project.

switch (mode) { 
case(InterpolationMode.POLY):
// use divided difference algorithm to compute Newton form coefficients
for (int k=1; k<=np-1; k++) 
{
for (int i=0; i<=np-1-k; i++) 
{
yCoords[i]=(yCoords[i+1]-yCoords[i])/(xCoords[i+k]-xCoords[i]);
}
}

// for equidistant points along x-axis evaluate polynomial and draw line
float dt = ((float) this.graphPanel.Width-1)/npp;
for (int k=0; k<=npp; k++) 
{
x=k*dt;
// evaluate polynomial at t
y = yCoords[0];
for (int i=1; i<=np-1; i++) 
{ 
y=y*(x-xCoords[i])+yCoords[i];
}
// draw line

try
{
g.DrawLine(linePen, (int)oldx,(int)oldy,(int)x,(int)y);
}
catch(Exception ex)
{
Console.WriteLine(ex.Message + " x1={0} y1={1} x2={2} y2={3}", oldx, oldy, x, y);
}
oldx=x;
oldy=y;
}
break;
case(InterpolationMode.NAT_SPL): 
if (np>1)
{ 
float[] a = new float[np];
float x1;
float x2;
float[] h = new float[np];
for (int i=1; i<=np-1; i++)
{
h[i] = xCoords[i] - xCoords[i-1];
}
if (np>2)
{
float[] sub = new float[np-1];
float[] diag = new float[np-1];
float[] sup = new float[np-1];
for (int i=1; i<=np-2; i++)
{
diag[i] = (h[i] + h[i+1])/3;
sup[i] = h[i+1]/6;
sub[i] = h[i]/6;
a[i] = (yCoords[i+1]-yCoords[i])/h[i+1]-(yCoords[i]-yCoords[i-1])/h[i];
}
solveTridiag(sub,diag,sup,ref a,np-2);
}
// note that a[0]=a[np-1]=0
// draw
oldx=xCoords[0];
oldy=yCoords[0];
try
{
g.DrawLine(linePen, (int)oldx,(int)oldy,(int)oldx,(int)oldy);
}
catch(Exception ex)
{
Console.WriteLine(ex.Message + " x1={0} y1={1} x2={0} y2={1}", oldx, oldy);
}

for (int i=1; i<=np-1; i++) 
{ // loop over intervals between nodes
for (int j=1; j<=precision; j++)
{
x1 = (h[i]*j)/precision;
x2 = h[i] - x1;
y = ((-a[i-1]/6*(x2+h[i])*x1+yCoords[i-1])*x2 +
(-a[i]/6*(x1+h[i])*x2+yCoords[i])*x1)/h[i];
x=xCoords[i-1]+x1;
if ((lastPen == null) || (lastPen == linePen2))
linePen = linePen1;
else
linePen = linePen2;
lastPen = linePen;

try
{
g.DrawLine(linePen, (int)oldx,(int)oldy,(int)x,(int)y);
}
catch(Exception ex)
{
Console.WriteLine(ex.Message + " x1={0} y1={1} x2={2} y2={3}", oldx, oldy, x, y);
}

oldx=x;
oldy=y;
}
}
}
break;
}

History

  • 20th October, 2005: Initial post

License

This article has no explicit license attached to it but may contain usage terms in the article text or the download files themselves. If in doubt please contact the author via the discussion board below.

A list of licenses authors might use can be found here