Click here to Skip to main content
65,938 articles
CodeProject is changing. Read more.
Articles
(untagged)

A Generic Frequency Table in C# with Descriptive Statistics

0.00/5 (No votes)
26 Feb 2007 1  
Frequencies, descriptive statistics and normality testing

What's New?

GetData: The new parameter Pristine indicates if you want to get data in the same order as entered. That might be of importance in case of time-dependant data. The new Add-method stores the position(s) of each value using a Dictionary<T, List<int>>.

Introduction

The exploration of empirical data is a common task in various fields. Especially the computational analysis of such data is often cumbered by the nature (the type) of the data. So - while writing statistical routines by my own - I decided to develop a "Frequency Table Class" which accepts any possible type of data.

Requirements

My class has to satisfy requirements as follows:

  • Accept any type of data (especially multiple precision types)
  • Accept a given array
  • Provide methods for adding and removing single values
  • Automatically update the absolute frequency when a value is added/removed
  • A simple way to fetch mode, highest frequency ...
  • Provide a method to get the table as an array
  • Returned arrays must be sortable by frequency and value
  • Provide fields/properties to describe the table

Code

The backbone of this class is the FrequencyTableEntry<T> structure:

// A generic structure storing the frequency information for each value
public struct FrequencyTableEntry<T> where T : IComparable<T>
{
    // Constructor
    // val: The value counted
    // absFreq: The absolute frequency
    // relFreq: The relative frequency
    // percentage: The percentage
    public FrequencyTableEntry(T val, int absFreq, double relFreq, double percentage)
    {
        Value = val;
        AbsoluteFreq = absFreq;
        RelativeFreq = relFreq;
        Percentage = percentage;
    }
    public T Value;
    public int AbsoluteFreq;
    public double RelativeFreq;
    public double Percentage;
}

The specified type T has to implement the IComparable-Interface (needed for the sorting routine). The class stores the data in a generic Dictionary: _entries = new Dictionary<T,int>(): the _entries.Keys-Collection contains the values to count, the _entries.Values-Collection contains the absolute frequency for this particular value:

public FrequencyTable(int initialCapacity)
{
    _entries = new Dictionary<T, int>(initialCapacity);
    .
    .
}

To provide easy access to table entries, the implemented enumerator returns the structure above:

public IEnumerator<FrequencyTableEntry<T>> GetEnumerator()
{
    // the structure to return
    FrequencyTableEntry<T> _output;
    // the frequency
    int int_f;
    // the "double-typed" frequency
    double dbl_f;
    foreach (T key in _entries.Keys)
    {
        int_f = _entries[key];
        dbl_f = (double)int_f;
        // fill the structure
        _output = new FrequencyTableEntry<T>
        (key, int_f, dbl_f / _count, dbl_f / _count * 100.0);
        // yielding - cool thing that
        yield return _output;
    }
}

The general Add(T value) method looks like this:

public void Add(T value)
{
    List<int> _tempPos;
    // if the Dictionary already contains value, then
    // we have to update frequency and _count
    if (_entries.ContainsKey(value))
    {
        // update the frequency
        _entries[value]++;
        // update mode and highest frequency
        if (_entries[value] > _high)
        {
            _high = _entries[value];
            _mode = value;
        }
        // add 1 to sample size
        _count++;
        foreach (T key in _entries.Keys)
        {
            _relFrequencies[key] = (double)_entries[key] / _count;
        }
        UpdateSumAndMean(value);
        // store the actual position of the entry in the dataset
        _positions.TryGetValue(value, out _tempPos);
        // the position is equal to _count
        _tempPos.Add(_count);
        // remove old entry
        _positions.Remove(value);
        // store new entry
        _positions.Add(value, _tempPos);
    }
    else /* if the dictionary does not contain value add a new entry */
    {
        // if the highest frequency is still zero, set it to one
        if (_high < 1)
        {
            _high = 1;
            _mode = value;
        }
        // add a new entry - frequency is one
        _entries.Add(value, 1);
        // add 1 to table length
        _length++;
        // add 1 to sample size
        _count++;
        // update relative frequencies
        _relFrequencies.Add(value, 0.0);
        foreach (T key in _entries.Keys)
        {
            _relFrequencies[key] = (double)_entries[key] / _count;
        }
        UpdateSumAndMean(value);
        // create a new entry and set position to _count
        _tempPos = new List<int>();
        _tempPos.Add(_count);
        // store it
        _positions.Add(value, _tempPos);
    }
}

To simplify the analysis of a given text, I have implemented a special constructor:

// Constructor - the created instance analyzes the 
// frequency of characters in a given string
// Text: String to analyze
public FrequencyTable(T Text, TextAnalyzeMode mode)
{
    _positions = new Dictionary<T, List<int>>();
    // if T is not string -> Exception
    if (!(Text is string))
        throw new ArgumentException();
    // the table itself
    _entries = new Dictionary<T, int>();
    _relFrequencies = new Hashtable();
    // number of entries in _entries
    _length = 0;
    // sample size
    _count = 0;
    // description of the table
    _description = "";
    // a user defined tag
    _tag = 0;
    // the highest frequency
    _high = 0;
    _dblSum = double.NaN;
    _mean = double.NaN;
    _alpha = double.NaN;
    AnalyzeString(Text, mode);
    _p = double.NaN;
}

The associated Add method:

public void Add(T Text, TextAnalyzeMode mode)
{
    if (!(Text is string))
        throw new ArgumentException();
    AnalyseString(Text, mode);
}

In my opinion, it is useful to provide different modes regarding literal analysis. These modes are provided by TextAnalyzeMode:

public enum TextAnalyzeMode
{
    AllCharacters,
    NoNumerals,
    NoSpecialCharacters,
    LettersOnly,
    NumeralsOnly,
    SpecialCharactersOnly
}

The analysis itself is performed by AnalyzeString(T Text, TextAnalyzeMode mode):

private void AnalyzeString(T Text, TextAnalyzeMode mode)
{
    // character strings
    string str_specialChars = @"""!§$%&/()=?@€<>|µ,.;:-_#'*+~²³ ";
    string str_Numbers = "0123456789";
    // Adding the entries according to mode
    switch (mode)
    {
        case TextAnalyzeMode.AllCharacters:
            foreach (char v in Text.ToString())
                this.Add((T)Convert.ChangeType((object)v, Text.Getype()));
            break;
        case TextAnalyzeMode.LettersOnly:
            foreach (char v in Text.ToString())
            {
                if ((str_specialChars.IndexOf(v) == -1) & 
            	(str_Numbers.IndexOf(v) == -1))
                    this.Add((T)Convert.ChangeType((object)v, Text.GetType()));
            }
            break;
        case TextAnalyzeMode.NoNumerals:
            foreach (char v in Text.ToString())
            {
                if (str_Numbers.IndexOf(v) == -1)
                        this.Add((T)Convert.ChangeType((object)v, Text.GetType()));
            }
            break;
        case TextAnalyzeMode.NoSpecialCharacters:
            foreach (char v in Text.ToString())
            {
                if (str_specialChars.IndexOf(v) == -1)
                    this.Add((T)Convert.ChangeType((object)v, Text.GetType()));
            }
            break;
        case TextAnalyzeMode.NumeralsOnly:
            foreach (char v in Text.ToString())
            {
                if (str_Numbers.IndexOf(v) != -1)
                    this.Add((T)Convert.ChangeType((object)v, Text.GetType()));
            }
            break;
        case TextAnalyzeMode.SpecialCharactersOnly:
            foreach (char v in Text.ToString())
            {
                if (str_specialChars.IndexOf(v) != -1)
                    this.Add((T)Convert.ChangeType((object)v, Text.GetType()));
            }
            break;
    }
}

Test for Normality

The question if given data are "Gaussian-distributed" is often raised. There are some robust and valid tests to answer this question. I have implemented the "good old" Kolmogorov-Smirnov test (KS-Test). Alternatively one can use the D'Agostino-Pearson test. There are two new properties concerning normality testing:

  • IsGaussian: Returns true if data are numerical and the computed p-value is greater than Alpha (see below)
  • Alpha: Defines the "significance level" for the KS-Test

The KS-Test method is shown below. The method returns true, if the test is applicable. In case of non-numerical data, the method returns false. The out-parameter p contains the p-value on exit. This value can be accessed by calling the P_Value property.

private bool KS_Test(out double p)
{
   // D-statistic
   double D = double.NaN;
   CumulativeFrequencyTableEntry<T>[] empCDF = 
	GetCumulativeFrequencyTable(CumulativeFrequencyTableFormat.EachDatapointOnce);
   // store the test CDF
   double testCDF;
   // array to store datapoints
   double[] data = new double[empCDF.Length];
   FrequencyTableEntry<T>[] table = GetTableAsArray
			(FrequencyTableSortOrder.Value_Ascending);
   int i = 0;
   // prevent exceptions if T is not numerical
   try
   {
      foreach (FrequencyTableEntry<T> entry in table)
      {
         data[i] = (double)Convert.ChangeType(entry.Value, TypeCode.Double);
         i++;
      }
   }
   catch
   {
      p = double.NaN;
      return false;
   }
   // estimate the parameters of the expected Gaussian distribution
   // first: compute the mean
   double mean = Mean;
   // compute the bias-corrected variance
   // as an estimator for the population variance (actually we need the
   // square root)
   double _sqrt_var = Math.Sqrt(VariancePop);
   // now we have to determine the greatest difference between the
   // sample cumulative distribution function (empCDF) and
   // the distribution function to test (testCDF)
   double _sqrt2 = Math.Sqrt(2.0);
   double _erf;
   double max1 = 0.0;
   double max2 = 0.0;
   double _temp;
   for (i = 0; i < empCDF.Length; i++)
   {
      // compute the expected distribution using the error function
      _erf = Erf(((data[i] - mean) / _sqrt_var) / _sqrt2);
      testCDF = 0.5 * (1.0 + _erf);
      _temp = Math.Abs(empCDF[i].CumulativeRelativeFrequency - testCDF);
      if (_temp > max1)
        max1 = _temp;
      if (i > 0)
        _temp = Math.Abs(empCDF[i - 1].CumulativeRelativeFrequency - testCDF);
      else
        _temp = testCDF;
      if (_temp > max2)
        max2 = _temp;
   }
   // the statistics to use is
   // max{diff1,diff2}
   D = max1 > max2 ? max1 : max2;
   // now compute the p-value using a z-transformation
   if (!Double.IsNaN(D))
   {
      double z = Math.Sqrt((double)SampleSize) * D;
      p = KS_Prob_Smirnov(z);
   }
   else
      p = double.NaN;
   return true;
}

To compute the "test distribution" (the Gaussian CDF in this case) we need the so called error function. I have used the Erf-implementation written by Miroslav Stampar (see Special Function(s) for C#), which is a translation of the Cephes Math Library by Stephen L. Moshier.

Descriptive Statistics

I think it is useful to implement some fundamental statistical properties inside the class.

Cumulative Frequencies

First of all, it is needed to implement a method which returns the empirical distribution function (the cumulative density function) of the given data:

public CumulativeFrequencyTableEntry<T>[] 
	GetCumulativeFrequencyTable(CumulativeFrequencyTableFormat Format)
{
   CumulativeFrequencyTableEntry<T>[] _output = null;
   // get the frequency table as array for easier processing
   FrequencyTableEntry<T>[] _freqTable = 
       GetTableAsArray(FrequencyTableSortOrder.Value_Ascending);
   // temporary values
   double tempCumRelFreq = 0.0;
   int tempCumAbsFreq = 0;
   int i, k;
   switch (Format)
   {
      // each datapoint will returned
      case CumulativeFrequencyTableFormat.EachDatapoint:
        // initialize the result
        _output = new CumulativeFrequencyTableEntry<T>[SampleSize];
        for (i = 0; i < _freqTable.Length; i++)
        {
          // update the cumulative frequency - relative and absolute
          tempCumAbsFreq += _freqTable[i].AbsoluteFreq;
          tempCumRelFreq += _freqTable[i].RelativeFreq;
          // fill the array
          for (k = tempCumAbsFreq - _freqTable[i].AbsoluteFreq;k < tempCumAbsFreq; k++)
          {
            _output[k] = new CumulativeFrequencyTableEntry<T>
			(_freqTable[i].Value, tempCumRelFreq, tempCumAbsFreq);
          }
        }
      break;
      // here each different entry will be returned once
      case CumulativeFrequencyTableFormat.EachDatapointOnce:
        // initialize the result
        _output = new CumulativeFrequencyTableEntry<T>[Length];
        for (i = 0; i < _freqTable.Length; i++)
        {
          // update the cumulative frequency - relative and absolute
          tempCumAbsFreq += _freqTable[i].AbsoluteFreq;
          tempCumRelFreq += _freqTable[i].RelativeFreq;
          // fill the array
          _output[i] = new CumulativeFrequencyTableEntry<T>
			(_freqTable[i].Value, tempCumRelFreq, tempCumAbsFreq);
        }
       break;
   }
   // done
   return _output;
}

(Sorry for that strange formatting - this edit tool...)

Where Are My Data??

Ok - you need an array of the added data? That is the way:

public T[] GetData(bool Pristine)
{
    T[] result = new T[SampleSize];
    // if the order is not important
    if (!Pristine)
    {
        CumulativeFrequencyTableEntry<T>[] cf = GetCumulativeFrequencyTable
	        (CumulativeFrequencyTableFormat.EachDatapoint);
        for (int i = 0; i < SampleSize; i++)
            result[i] = cf[i].Value;
    }
    else /* return the data in same order as entered */
    {
        List<int> l;
        foreach (T key in _positions.Keys)
        {
            _positions.TryGetValue(key, out l);
            foreach (int k in l)
            {
                result[k - 1] = key;
            }
        }
    }
    return result;
}

What Else?

There are some public properties concerning descriptive statistics:

  • Mean
  • Median
  • Mode
  • Minimum
  • Maximum
  • VarianceSample
  • VariancePop (unbiased estimator)
  • StandardDevSample
  • StandardDevPop (unbiased estimator)
  • StandardError
  • Sum
  • SampleSize - the number of data (read only)
  • HighestFrequency - the highest frequency observed
  • SmallestFrequency - the smallest frequency
  • ScarcestValue - the scarcest value
  • Kurtosis
  • KurtosisExcess
  • Skewness

If the data is not numerical, all properties above will return double.NaN.

Miscellaneous

Here is a list of the remaining public properties and methods.

Properties

  • Length - The number of table entries (read only)
  • Tag - An object which can be set by the user (writable)
  • Description - The description of the table (writable)
  • P_Value (contains the p value computed by the Kolmogorov-Smirnov Test)

Methods

  • Add(T Value) and Add(T Test, TextAnalyzeMode mode)
  • Remove(T Value)
  • GetTableAsArray() and GetTableAsArray(FrequencyTableSortOrder order) (sorting is done by using the Quicksort-Algorithm)
  • GetEnumerator()
  • ContainsValue(T value)
  • GetCumulativeFrequencyTable(CumulativeFrequencyTableFormat Format)
  • GetData(bool Pristine) - Returns the data as an array (sorted or in input order)
  • GetRelativeFrequency(T value, out double relFreq)

The code is (I think so) well documented so you can use it to get a detailed insight into my solution. I am sure that this solution is not perfect, but it is a good starting point.

For a better overview, I have added a compiled help file (see download at the top of this page).

History

  • Version 1.0 - 18 Jan '07
    • Initial release
  • Version 1.5 - 04 Feb '07
    • Minor bug fixes (highest frequency was not set correctly)
    • Added normality testing
    • Added descriptive statistics
  • 09 Feb '07
    • P_Value added, release number not changed
  • Version 2.0 26 Feb '07
    • GetData(bool Pristine) added

License

This article has no explicit license attached to it but may contain usage terms in the article text or the download files themselves. If in doubt please contact the author via the discussion board below.

A list of licenses authors might use can be found here