The Paradigm
Consider this common Singleton pattern implementation:
public class Singleton
{
static private readonly object locker = new object();
static public Singleton Instance
{
get
{
lock ( locker )
{
if ( _Instance == null ) _Instance = new Singleton();
return _Instance;
}
}
}
static private volatile Singleton _Instance;
private Singleton()
{
}
}
The problem is that you can inherit this class and create a public
constructor if there is no private
constructor. Furthermore, static
members are allowed. This is no longer a singleton at all. Setting the class as sealed
can be an acceptable solution, but you must implement singleton by singleton, i.e., more than ten lines. Thus, coding such a singleton can be the source of many errors and difficulties. Thinking with factoring is not only an agile principle, it is a mathematical theorem.
Defining a Generic Singleton
A generic solution is to check the absence of static
members and that there is only one parameterless private
constructor, or an exception is thrown. Singletons that inherit this class can't be inherited and must be sealed
. Moreover, the implementation of singleton types are checked at program startup. Therefore, it is not the best solution, but the only thing to do is to create one parameterless private
constructor, no static
members, and seal the class.
Here are the members of the proposed singleton:
abstract public class Singleton<T> where T : Singleton<T>;
This is the declaration of a generic abstract
class where T
is a singleton. By writing this, the type consistency is clear.
static public string Filename;
static public void Save();
This is used to provide storage on disk for persistent singletons and to save their states.
static public T Instance;
static public T GetInstance();
This is the classic access to the instance of the singleton.
static public T GetPersistentInstance(string filename);
static public T GetPersistentInstance();
This creates a persistent instance: it deserializes the object from the disk or creates a new one. It uses a specific filename or a system name. Note: Defining the name after using the singleton doesn't load a new instance, and should throw an error if localization exists.
static private T CreateInstance();
static internal ConstructorInfo CheckImplementation();
This creates the instance by invoking the default private
constructor. The singleton implementation validity is checked as indicated above.
Here are the Serialize
and Deserialize
functions:
static public void Serialize(this object obj, string filename, int buffersize)
{
if ( !obj.GetType().IsSerializable )
throw new IOException(SystemManager.Language.Get("ObjectIsNotSerializable",
obj.GetType().Name));
using ( FileStream f = new FileStream(filename,
FileMode.Create, FileAccess.Write,
FileShare.None,
buffersize
) )
new BinaryFormatter().Serialize(f, obj);
}
static public object Deserialize(this string filename, int buffersize)
{
using ( FileStream f = new FileStream(filename,
FileMode.Open, FileAccess.Read,
FileShare.None,
buffersize) )
return new BinaryFormatter().Deserialize(f);
}
Coding the Singleton
namespace Ordisoftware.Core.ObjectModel
{
[Serializable]
abstract public class Singleton<T> where T : Singleton<T>
{
static private readonly object locker = new object();
static protected void DoError(string s)
{
throw new SingletonException(SystemManager.Language.Get(s),
typeof(T));
}
static public string Filename
{
get { return _Filename; }
set
{
if ( _Filename == value ) return;
lock ( locker )
{
if ( FileTool.Exists(_Filename) ) FileTool.Move(_Filename, value);
_Filename = value;
}
}
}
static private volatile string _Filename;
static public void Save()
{
lock ( locker )
if ( !( _Filename.IsNullOrEmpty() && Instance.IsNull() ) )
{
FolderTool.Check(_Filename);
Instance.Serialize(_Filename);
}
}
~Singleton()
{
try { Save(); }
catch (Exception e) { ShowError(e.Message); }
}
static public T Instance
{
get
{
lock ( locker )
{
if ( _Instance == null )
if ( FileTool.Exists(_Filename) )
_Instance = (T)_Filename.Deserialize();
else _Instance = CreateInstance();
return _Instance;
}
}
}
static private volatile T _Instance;
static public T GetInstance()
{
return Instance;
}
static public T GetPersistentInstance(string filename)
{
Filename = filename;
return Instance;
}
static public T GetPersistentInstance()
{
if ( _Instance != null ) return _Instance;
Type type = typeof(T);
string s = type.Namespace + '.' + type.Name.Replace('`', '_');
foreach ( Type t in type.GetGenericArguments() )
s += " " + t.FullName;
s = SystemManager.FolderSystem + s + SystemManager.ExtObjectFile;
return GetPersistentInstance(s);
}
static private T CreateInstance()
{
return (T)CheckImplementation().Invoke(null);
}
static internal ConstructorInfo CheckImplementation()
{
Type type = typeof(T);
if ( !type.IsSealed ) DoError("SingletonMustBeSealed");
var bf1 = BindingFlags.Static | BindingFlags.NonPublic |
BindingFlags.Public;
var bf2 = BindingFlags.Instance | BindingFlags.Public;
var bf3 = BindingFlags.Instance | BindingFlags.NonPublic;
if ( type.GetMembers(bf1).Length != 0 )
DoError("SingletonNoStaticMembers");
if ( type.GetConstructors(bf2).Length != 0 )
DoError("SingletonNoPublicConstructors");
ConstructorInfo[] list = type.GetConstructors(bf3);
if ( ( list.Length != 1 ) || ( list[0].GetParameters().Length != 0 )
|| ( !list[0].IsPrivate ) )
DoError("SingletonOnlyOnePrivateConstructor");
return l[0];
}
}
}
Startup Checking
namespace Ordisoftware.Core
{
static public class SystemManager
{
static public void Initialize()
{
Type type = Type.GetType("Ordisoftware.Core.ObjectModel.Singleton`1");
if ( type != null )
{
MethodInfo method;
string name = "CheckImplementation";
var bf = BindingFlags.InvokeMethod | BindingFlags.FlattenHierarchy
| BindingFlags.Static | BindingFlags.NonPublic;
var list = ObjectUtility.GetClasses(t => ( t.BaseType.Name == type.Name )
&& ( t.BaseType.Namespace == type.Namespace ));
foreach ( var t in list )
try
{
if ( !t.ContainsGenericParameters ) method = t.GetMethod(name, bf);
else
{
Type[] p = t.GetGenericArguments();
for ( int i = 0; i < p.Length; i++ ) p[i] = typeof(object);
method = t.MakeGenericType(p).GetMethod(name, bf);
}
method.Invoke(null, new object[0]);
}
catch ( Exception e ) { b = true; ShowException(e); }
}
}
}
}
Here is the GetClasses
function:
static public TypeList GetClasses(Func<Type, bool> select)
{
return GetList(t => t.IsClass, select);
}
static private TypeList GetList(Func<Type, bool> check,
Func<Type, bool> select)
{
TypeList list = new TypeList();
Type[] l1 = Assembly.GetExecutingAssembly().GetTypes();
if ( select == null ) list.AddRange(l1);
else
foreach ( Type t in l1 )
if ( check(t) && select(t) ) list.Add(t);
Module[] l2 = Assembly.GetEntryAssembly().GetLoadedModules();
if ( select == null ) list.AddRange(l1);
else
foreach ( Module m in l2 )
foreach ( Type t in m.Assembly.GetTypes() )
if ( check(t) && select(t) ) list.Add(t);
list.Sort((v1, v2) => v1.FullName.CompareTo(v2.FullName));
return list;
}
Example of Usage
Each execution adds 10 to the value displayed by this program:
[Serializable]
public class MySingleton : Singleton<MySingleton>
{
public int Value { get; set; }
private MySingleton() { }
}
static class Program
{
[STAThread]
static void Main(string[] args)
{
SystemManager.Initialize();
try
{
var v = MySingleton.GetPersistentInstance();
v.Value += 10;
Console.WriteLine("MySingleton.Value = " +
MySingleton.Instance.Value);
}
catch ( Exception e ) { Debugger.ManageException(null, e); }
finally { SystemManager.Finalize(); }
}
}
The missing "singleton" Language Keyword
The best way to implement a singleton in C# is to create a static
class, but this may cause a problem with serialization and with when the object is initialized, whether one considers laziness.
The ideal thing would be to have a language keyword like singleton: an artifact having no static
fields and only one constructor with no parameter and no access modifier. It can be inherited only if marked as abstract
. It may be used like a static
class but will act like an instantiated class. It may be serializable and disposable: the first usage deserializes the object if a stream is associated or creates a new single instance, disposing serializes the singleton or does nothing if no stream is associated, changing the stream moves the instance from the old to the new, and setting a stream on a singleton already instantiated causes a usage exception if the new stream localizes an item that exists.
[Serializable]
[SingletonPersistence(false)] public singleton MySingleton
{
public int Value {get; set; }
MySingleton()
{
}
}
var stream1 = new SingletonFileStream("c:\\mysingleton.bin");
var stream2 = new SingletonSystemStream();
MySingleton.SetStream(stream1);
MySingleton.Value += 10;
MySingleton.SetStream(stream2);
MySingleton.Value += 10;
MySingleton.SaveState();
Recommended Articles
History
This article was written on July 21st, 2009 based on a vision developed for the Ordisoftware Core Library for .NET project.
The source code and demo were updated on June 26, 2012.