Introduction
The development of the MathJax javascript library has dragged us kicking and screaming out of the dark days of ASCII math1. Gone are the days when n = n^2
is acceptable because it's just as easy to write \(n = n^2\).
Using MathJax in your articles
Enclose your mathematics within a tag of class "math" and use $...$
to wrap equation blocks and \(...\)
to wrap inline equations. eg <div class="math">$...$</div>
to wrap a block of equations, or <span class="math">\(...\)</span>
for an inline equation.
View the MathJax Tex/LaTeX pages for information on the commands supported.
You also may find it handy to use this online LatTeX editor: http://www.codecogs.com/latex/eqneditor.php. There are a few useful items here:
- It is an easy way to find the particular syntax you need
- If you notice your formula is not rendering properly in the preview you can paste it into here for review. It will tell you, for example, "you have too many unclosed {"
Examples
Some quick examples taken directly from the MathJax pages (but adapted to our implementation) to get you started.
The Lorenz Equations
<div class="math">$\begin{aligned}
\dot{x} & = \sigma(y-x) \\
\dot{y} & = \rho x - y - xz \\
\dot{z} & = -\beta z + xy
\end{aligned} $</div>
becomes
$\begin{aligned} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{aligned} $
The Cauchy-Schwarz Inequality
<div class="math">$\left( \sum_{k=1}^n a_k b_k \right)^2 \leq
\left( \sum_{k=1}^n a_k^2 \right)
\left( \sum_{k=1}^n b_k^2 \right)$</div>
becomes
$\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$
A Cross Product Formula
<div class="math">$\mathbf{V}_1 \times \mathbf{V}_2 =
\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
\end{vmatrix}$</div>
becomes
$\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix}$
<p>The probability of getting <span class="math">(k)</span> heads when flipping <span class="math">(n)</span> coins is</p>
becomes
The probability of getting (k) heads when flipping (n) coins is
<div class="math">$P(E) = {n \choose k} p^k (1-p)^{ n-k}$</div>
becomes
$P(E) = {n \choose k} p^k (1-p)^{ n-k}$
An Identity of Ramanujan
<div class="math">$ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } $</div>
$ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } $
A Rogers-Ramanujan Identity
<div class="math">$ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for $|q|<1$}. $</div>
becomes
$ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for $|q|<1$}. $
Maxwell’s Equations
<div class="math">$ \begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\
\nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} $</div>
$ \begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} $