Click here to Skip to main content
65,938 articles
CodeProject is changing. Read more.
Articles / artificial-intelligence / Keras

Basic Deep Learning using Python+Keras. Chapter 2

3.93/5 (5 votes)
18 Jun 2018CPOL6 min read 18.1K  
Second article of a series of articles introducing deep learning coding in Python and Keras framework

Introduction

This article doesn't give you an introduction to deep learning. You are supposed to know the basis of deep learning and a little of Python coding. The main objective of this article is to introduce you to the basis of Keras framework and use with another known library to make a quick experiment and take the first conclusions.

Background

In the last article, we trained a simple neural net. This time, we will train a Convolutional Neural Network and compare it with the previous results.

Image 1

All the experiments are done with educational purposes and the train process will be very quick and the results won't be perfect.

Using the Code

We want to train a simple Convolutional Neural Net. In the following link, you can view an introduction of what is a ConvNet compared to a regular or traditional neural net.

Keras gives all the tools for making a ConvNet easily. All the tools used to see the quality of the model are the same we used in the last article.

First Step: Load Libraries

Like the previous article, we need to load all the libraries we need: numpy, TensorFlow, Keras, Scikit Learn, Pandas... and more.

Python
import numpy as np 
from scipy import misc 
from PIL import Image 
import glob 
import matplotlib.pyplot as plt 
import scipy.misc 
from matplotlib.pyplot import imshow 
%matplotlib inline 
from IPython.display import SVG 
import cv2 
import seaborn as sn 
import pandas as pd 
import pickle 
from keras import layers 
from keras.layers import Flatten, Input, Add, Dense, Activation, ZeroPadding2D, 
BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D, Dropout 
from keras.models import Sequential, Model, load_model 
from keras.preprocessing import image 
from keras.preprocessing.image import load_img 
from keras.preprocessing.image import img_to_array 
from keras.applications.imagenet_utils import decode_predictions 
from keras.utils import layer_utils, np_utils 
from keras.utils.data_utils import get_file 
from keras.applications.imagenet_utils import preprocess_input 
from keras.utils.vis_utils import model_to_dot 
from keras.utils import plot_model 
from keras.initializers import glorot_uniform 
from keras import losses 
import keras.backend as K 
from keras.callbacks import ModelCheckpoint 
from sklearn.metrics import confusion_matrix, classification_report 
import tensorflow as tf

Set Up Datasets

We use the CIFAR-100 dataset. This dataset has been used for a long time. It has 600 images per class with a total of 100 classes. It has 500 images for training and 100 images for validation per each class. Every one of the 100 classes are grouped in 20 superclasses. Each image has one "fine" label (the main class) and a "coarse" label (its superclass).

Keras framework has the module for direct download:

Python
from keras.datasets import cifar100 

(x_train_original, y_train_original), 
(x_test_original, y_test_original) = cifar100.load_data(label_mode='fine')

Actually, we have downloaded the train and test datasets. x_train_original and x_test_original have the train and test images respectively, whereas y_train_original and y_test_original have the labels.

Let's see the y_train_original:

Python
array([[19], [29], [ 0], ..., [ 3], [ 7], [73]])

As you can see, it is an array where each number corresponds to a label. Then, the first thing we have to do is convert these arrays to the one-hot-encoding version (see wikipedia).

Python
y_train = np_utils.to_categorical(y_train_original, 100) 
y_test = np_utils.to_categorical(y_test_original, 100)

OK, now, let's see the train dataset (x_train_original):

Python
array([[[255, 255, 255], 
[255, 255, 255], 
[255, 255, 255], 
..., 
[195, 205, 193], 
[212, 224, 204], 
[182, 194, 167]], 

[[255, 255, 255], 
[254, 254, 254], 
[254, 254, 254], 
..., 
[170, 176, 150], 
[161, 168, 130], 
[146, 154, 113]], 

[[255, 255, 255], 
[254, 254, 254], 
[255, 255, 255], 
..., 
[189, 199, 169], 
[166, 178, 130], 
[121, 133, 87]], 

..., 

[[148, 185, 79], 
[142, 182, 57], 
[140, 179, 60], 
..., 
[ 30, 17, 1], 
[ 65, 62, 15], 
[ 76, 77, 20]], 

[[122, 157, 66], 
[120, 155, 58], 
[126, 160, 71], 
..., 
[ 22, 16, 3], 
[ 97, 112, 56], 
[141, 161, 87]], 

...and more...

], dtype=uint8)

This dataset represents the 3 channels of 256 RGB pixels. Want to see it?

Python
imgplot = plt.imshow(x_train_original[3]) plt.show()

Image 2

Next, we have to normalize the images. That is, divide each element of the dataset by the total pixel number: 255. Once this is done, the array will have values between 0 and 1.

Python
x_train = x_train_original/255 
x_test = x_test_original/255

Setting Up the Training Environment

Before training, we have to set two parameters in Keras environment. First, we have to say Keras where in the array are the channels. In an image array, channels can be in the last index or in the first. This is known channels first or channels last. In our exercise, we will set to channel last.

Python
K.set_image_data_format('channels_last')

And the second thing is to say in which phase Keras is. In our case, learning phase.

Python
K.set_learning_phase(1)

In the next articles, we will not show these two sections because they are the same in all the articles.

Training the ConvNet

In this step, we will define the ConvNet model.

Python
def create_simple_cnn(): 
  model = Sequential() 
  model.add(Conv2D(32, kernel_size=(3, 3), input_shape=(32, 32, 3), activation='relu')) 
  model.add(Conv2D(64, kernel_size=(3, 3), activation='relu')) 
  model.add(MaxPooling2D(pool_size=(2, 2))) 
  model.add(Conv2D(128, kernel_size=(3, 3), activation='relu')) 
  model.add(Conv2D(256, kernel_size=(3, 3), activation='relu')) 
  model.add(Conv2D(512, kernel_size=(3, 3), activation='relu')) 
  model.add(MaxPooling2D(pool_size=(2, 2))) 
  model.add(Conv2D(1024, kernel_size=(3, 3), activation='relu')) 
  model.add(MaxPooling2D(pool_size=(2, 2))) 
  model.add(Flatten()) 
  model.add(Dense(500, activation='relu')) 
  model.add(Dropout(0.5)) 
  model.add(Dense(100, activation='softmax')) 

  return model

As you can see in the code, Conv2D line introduces a convolutional layer and the MaxPooling line, the pooling layer (In this net, we have used max-pooling, but we could have used average pooling). For each convolutional layer, we use ReLu activation function. Another important instruction is Dropout, with that, we make a small regularization.

Once the model is defined, we compile setting the optimization function, the loss function and the metrics. As previous experiment, we use stochactic gradient descent, categorical cross entropy and, for the metrics, accuracy and mse (Mean Squared Errors).

Python
scnn_model = create_simple_cnn() 
scnn_model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['acc', 'mse'])

Ok, let's see the summary for this model.

Python
scnn_model.summary() 
_________________________________________________________________ 
Layer (type) Output Shape Param # 
================================================================= 
conv2d_7 (Conv2D) (None, 30, 30, 32) 896 
_________________________________________________________________ 
conv2d_8 (Conv2D) (None, 28, 28, 64) 18496 
_________________________________________________________________ 
max_pooling2d_4 (MaxPooling2 (None, 14, 14, 64) 0 
_________________________________________________________________ 
conv2d_9 (Conv2D) (None, 12, 12, 128) 73856 
_________________________________________________________________ 
conv2d_10 (Conv2D) (None, 10, 10, 256) 295168 
_________________________________________________________________ 
conv2d_11 (Conv2D) (None, 8, 8, 512) 1180160 
_________________________________________________________________ 
max_pooling2d_5 (MaxPooling2 (None, 4, 4, 512) 0 
_________________________________________________________________ 
conv2d_12 (Conv2D) (None, 2, 2, 1024) 4719616 
_________________________________________________________________ 
max_pooling2d_6 (MaxPooling2 (None, 1, 1, 1024) 0 
_________________________________________________________________ 
flatten_2 (Flatten) (None, 1024) 0 
_________________________________________________________________ 
dense_3 (Dense) (None, 500) 512500 
_________________________________________________________________ 
dropout_4 (Dropout) (None, 500) 0 
_________________________________________________________________ 
dense_4 (Dense) (None, 100) 50100 
================================================================= 
Total params: 6,850,792 
Trainable params: 6,850,792 
Non-trainable params: 0 
_________________________________________________________________

We can see the number of params have doubled. Despite the double number of params, if we could use a regular network, the real number of params should be higher. With the convolution step, the net will extract the features of the images.

Then, the next step is to train the model.

Python
scnn = scnn_model.fit(x=x_train, y=y_train, batch_size=32, epochs=10, 
       verbose=1, validation_data=(x_test, y_test), shuffle=True)

We will train this model in the same way as the last experiment. We will use batches of 32 (for memory reduction) and take 10 epochs. Results are stored in the scnn variable. As you can see, the instructions are the same.

Python
Train on 50000 samples, validate on 10000 samples
Epoch 1/10
50000/50000 [==============================] - 59s 1ms/step - loss: 4.5980 
- acc: 0.0136 - mean_squared_error: 0.0099 - val_loss: 4.5637 - val_acc: 0.0233 
- val_mean_squared_error: 0.0099
Epoch 2/10
50000/50000 [==============================] - 58s 1ms/step - loss: 4.4183 
- acc: 0.0302 - mean_squared_error: 0.0099 - val_loss: 4.3002 - val_acc: 0.0372 
- val_mean_squared_error: 0.0098
Epoch 3/10
 50000/50000 [==============================] - 58s 1ms/step - loss: 4.2146 
- acc: 0.0549 - mean_squared_error: 0.0098 - val_loss: 4.1151 - val_acc: 0.0745 
- val_mean_squared_error: 0.0097
Epoch 4/10
 50000/50000 [==============================] - 58s 1ms/step - loss: 3.9989 
- acc: 0.0889 - mean_squared_error: 0.0097 - val_loss: 3.9709 - val_acc: 0.0922 
- val_mean_squared_error: 0.0096
Epoch 5/10
 50000/50000 [==============================] - 58s 1ms/step - loss: 3.8207 
- acc: 0.1175 - mean_squared_error: 0.0095 - val_loss: 3.8121 - val_acc: 0.1172 
- val_mean_squared_error: 0.0095
Epoch 6/10
 50000/50000 [==============================] - 58s 1ms/step - loss: 3.6638 
- acc: 0.1444 - mean_squared_error: 0.0094 - val_loss: 3.6191 - val_acc: 0.1620 
- val_mean_squared_error: 0.0093
Epoch 7/10
 50000/50000 [==============================] - 58s 1ms/step - loss: 3.5202 
- acc: 0.1695 - mean_squared_error: 0.0093 - val_loss: 3.5624 - val_acc: 0.1631 
- val_mean_squared_error: 0.0093
Epoch 8/10
 50000/50000 [==============================] - 58s 1ms/step - loss: 3.3970 
- acc: 0.1940 - mean_squared_error: 0.0091 - val_loss: 3.5031 - val_acc: 0.1777 
- val_mean_squared_error: 0.0092
Epoch 9/10
 50000/50000 [==============================] - 58s 1ms/step - loss: 3.2684 
- acc: 0.2160 - mean_squared_error: 0.0090 - val_loss: 3.3561 - val_acc: 0.2061 
- val_mean_squared_error: 0.0090
Epoch 10/10
 50000/50000 [==============================] - 58s 1ms/step - loss: 3.1532 
- acc: 0.2383 - mean_squared_error: 0.0088 - val_loss: 3.2669 - val_acc: 0.2183 
- val_mean_squared_error: 0.0089

Let's see the metrics for the train and test results graphically (using matplotlib library, of course).

Python
plt.figure(0)
plt.plot(scnn.history['acc'],'r')
plt.plot(scnn.history['val_acc'],'g')
plt.xticks(np.arange(0, 11, 2.0))
plt.rcParams['figure.figsize'] = (8, 6)
plt.xlabel("Num of Epochs")
plt.ylabel("Accuracy")
plt.title("Training Accuracy vs Validation Accuracy")
plt.legend(['train','validation'])
 
plt.figure(1)
plt.plot(scnn.history['loss'],'r')
plt.plot(scnn.history['val_loss'],'g')
plt.xticks(np.arange(0, 11, 2.0))
plt.rcParams['figure.figsize'] = (8, 6)
plt.xlabel("Num of Epochs")
plt.ylabel("Loss")
plt.title("Training Loss vs Validation Loss")
plt.legend(['train','validation'])
 
plt.show()

Image 3Image 4

In this case, the generalization is better than the regular network because, unlike 4% of the simple network, it has a 2%, which is not also a good result.

Confusion Matrix

Once we have trained our model, we want to see another metrics before taking any conclusion of the usability of the model we have been created. For this, we will create the confusion matrix and, from that, we will see the precision, recall y F1-score metrics (see wikipedia).

To create the confusion matrix, we need to make the predictions over the test set and then, we can create the confusion matrix and show that metrics.

Python
scnn_pred = scnn_model.predict(x_test, batch_size=32, verbose=1)
scnn_predicted = np.argmax(scnn_pred, axis=1)

As we did in the previous chapter, each higher value of the array of predictions will be the real prediction. Really, the usual way is to take a bias value to discriminate if a prediction value can be positive.

The Scikit Learn library has the methods to make the confusion matrix.

Python
#Creamos la matriz de confusión
scnn_cm = confusion_matrix(np.argmax(y_test, axis=1), scnn_predicted)

# Visualiamos la matriz de confusión
scnn_df_cm = pd.DataFrame(scnn_cm, range(100), range(100))
plt.figure(figsize = (20,14))
sn.set(font_scale=1.4) #for label size
sn.heatmap(scnn_df_cm, annot=True, annot_kws={"size": 12}) # font size
plt.show()

Image 5

And the next step, show the metrics.

Python
scnn_report = classification_report(np.argmax(y_test, axis=1), scnn_predicted)
print(scnn_report)

             precision    recall  f1-score   support

          0       0.40      0.49      0.44       100
          1       0.36      0.20      0.26       100
          2       0.19      0.24      0.21       100
          3       0.12      0.07      0.09       100
          4       0.11      0.01      0.02       100
          5       0.12      0.13      0.12       100
          6       0.25      0.19      0.22       100
          7       0.28      0.17      0.21       100
          8       0.18      0.24      0.20       100
          9       0.25      0.35      0.29       100
         10       0.00      0.00      0.00       100
         11       0.13      0.15      0.14       100
         12       0.24      0.24      0.24       100
         13       0.24      0.15      0.18       100
         14       0.18      0.03      0.05       100
         15       0.12      0.20      0.15       100
         16       0.29      0.21      0.24       100
         17       0.23      0.57      0.33       100
         18       0.20      0.31      0.25       100
         19       0.11      0.05      0.07       100
         20       0.41      0.40      0.41       100
         21       0.30      0.24      0.27       100
         22       0.16      0.13      0.14       100
         23       0.37      0.38      0.37       100
         24       0.31      0.49      0.38       100
         25       0.16      0.11      0.13       100
         26       0.18      0.09      0.12       100
         27       0.14      0.20      0.17       100
         28       0.22      0.24      0.23       100
         29       0.20      0.26      0.22       100
         30       0.35      0.19      0.25       100
         31       0.09      0.04      0.06       100
         32       0.24      0.19      0.21       100
         33       0.24      0.16      0.19       100
         34       0.20      0.15      0.17       100
         35       0.12      0.14      0.13       100
         36       0.16      0.37      0.22       100
         37       0.13      0.14      0.14       100
         38       0.05      0.04      0.04       100
         39       0.19      0.10      0.13       100
         40       0.12      0.11      0.11       100
         41       0.35      0.55      0.43       100
         42       0.10      0.14      0.12       100
         43       0.18      0.25      0.21       100
         44       0.17      0.07      0.10       100
         45       0.50      0.03      0.06       100
         46       0.18      0.12      0.14       100
         47       0.32      0.40      0.35       100
         48       0.38      0.35      0.36       100
         49       0.26      0.18      0.21       100
         50       0.05      0.05      0.05       100
         51       0.16      0.14      0.15       100
         52       0.65      0.40      0.49       100
         53       0.31      0.56      0.40       100
         54       0.28      0.31      0.29       100
         55       0.08      0.01      0.02       100
         56       0.30      0.28      0.29       100
         57       0.16      0.33      0.22       100
         58       0.27      0.13      0.17       100
         59       0.15      0.18      0.17       100
         60       0.61      0.68      0.64       100
         61       0.11      0.43      0.18       100
         62       0.49      0.21      0.29       100
         63       0.16      0.22      0.19       100
         64       0.11      0.22      0.15       100
         65       0.04      0.02      0.03       100
         66       0.05      0.05      0.05       100
         67       0.22      0.17      0.19       100
         68       0.48      0.46      0.47       100
         69       0.29      0.36      0.32       100
         70       0.26      0.34      0.29       100
         71       0.50      0.47      0.48       100
         72       0.19      0.03      0.05       100
         73       0.38      0.29      0.33       100
         74       0.13      0.14      0.13       100
         75       0.37      0.24      0.29       100
         76       0.36      0.50      0.42       100
         77       0.12      0.13      0.12       100
         78       0.10      0.06      0.08       100
         79       0.10      0.16      0.12       100
         80       0.03      0.03      0.03       100
         81       0.29      0.13      0.18       100
         82       0.62      0.59      0.61       100
         83       0.22      0.20      0.21       100
         84       0.06      0.06      0.06       100
         85       0.22      0.23      0.23       100
         86       0.20      0.35      0.25       100
         87       0.12      0.11      0.12       100
         88       0.13      0.23      0.17       100
         89       0.18      0.30      0.22       100
         90       0.13      0.03      0.05       100
         91       0.41      0.35      0.38       100
         92       0.16      0.10      0.12       100
         93       0.19      0.09      0.12       100
         94       0.27      0.58      0.37       100
         95       0.38      0.27      0.31       100
         96       0.17      0.18      0.17       100
         97       0.18      0.19      0.19       100
         98       0.07      0.04      0.05       100
         99       0.12      0.06      0.08       100

avg / total       0.22      0.22      0.21     10000

Well, not much different from the previous one. Let's see the ROC curve.

ROC Curve

The ROC curve is used by binary clasifiers because is a good tool to see the true positives rate versus false positives. Following lines show the code for the multiclass classification ROC curve. This code is from DloLogy, but you can go to the Scikit Learn documentation page.

Python
from sklearn.datasets import make_classification
from sklearn.preprocessing import label_binarize
from scipy import interp
from itertools import cycle

n_classes = 100

from sklearn.metrics import roc_curve, auc

# Plot linewidth.
lw = 2

# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
    fpr[i], tpr[i], _ = roc_curve(y_test[:, i], scnn_pred[:, i])
    roc_auc[i] = auc(fpr[i], tpr[i])

# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), scnn_pred.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

# Compute macro-average ROC curve and ROC area

# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))

# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):
    mean_tpr += interp(all_fpr, fpr[i], tpr[i])

# Finally average it and compute AUC
mean_tpr /= n_classes

fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])

# Plot all ROC curves
plt.figure(1)
plt.plot(fpr["micro"], tpr["micro"],
         label='micro-average ROC curve (area = {0:0.2f})'
               ''.format(roc_auc["micro"]),
         color='deeppink', linestyle=':', linewidth=4)

plt.plot(fpr["macro"], tpr["macro"],
         label='macro-average ROC curve (area = {0:0.2f})'
               ''.format(roc_auc["macro"]),
         color='navy', linestyle=':', linewidth=4)

colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
for i, color in zip(range(n_classes-97), colors):
    plt.plot(fpr[i], tpr[i], color=color, lw=lw,
             label='ROC curve of class {0} (area = {1:0.2f})'
             ''.format(i, roc_auc[i]))

plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Some extension of Receiver operating characteristic to multi-class')
plt.legend(loc="lower right")
plt.show()


# Zoom in view of the upper left corner.
plt.figure(2)
plt.xlim(0, 0.2)
plt.ylim(0.8, 1)
plt.plot(fpr["micro"], tpr["micro"],
         label='micro-average ROC curve (area = {0:0.2f})'
               ''.format(roc_auc["micro"]),
         color='deeppink', linestyle=':', linewidth=4)

plt.plot(fpr["macro"], tpr["macro"],
         label='macro-average ROC curve (area = {0:0.2f})'
               ''.format(roc_auc["macro"]),
         color='navy', linestyle=':', linewidth=4)

colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
for i, color in zip(range(3), colors):
    plt.plot(fpr[i], tpr[i], color=color, lw=lw,
             label='ROC curve of class {0} (area = {1:0.2f})'
             ''.format(i, roc_auc[i]))

plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Some extension of Receiver operating characteristic to multi-class')
plt.legend(loc="lower right")
plt.show()

Image 6

Image 7

Not bad. Let's see some prediction results.

Python
imgplot = plt.imshow(x_train_original[0])
plt.show()
print('class for image 1: ' + str(np.argmax(y_test[0])))
print('predicted:         ' + str(scnn_predicted[0]))

Image 8

Python
class for image 1: 49 
predicted: 85

Another result.

Python
imgplot = plt.imshow(x_train_original[3])
plt.show()
print('class for image 3: ' + str(np.argmax(y_test[3])))
print('predicted:         ' + str(scnn_predicted[3]))

Image 9

Python
class for image 3: 51 
predicted: 51

Then, we will save the train history results to future comparisons.

Python
#Histórico
with open(path_base + '/scnn_history.txt', 'wb') as file_pi:
  pickle.dump(scnn.history, file_pi)

Comparisons for the Metrics

The next step is compare the metrics of the previous experiment with this results. We will compare accuracy, loss and mean squared errors for both models (ConvNet and regular net). For this, we need to load the history results saved in previous chapters.

Python
with open(path_base + '/simplenn_history.txt', 'rb') as f:
  snn_history = pickle.load(f)

Now, we have the previous results in the snn_history variable. then, compare graphically.

Python
plt.figure(0)
plt.plot(snn_history['val_acc'],'r')
plt.plot(scnn.history['val_acc'],'g')
plt.xticks(np.arange(0, 11, 2.0))
plt.rcParams['figure.figsize'] = (8, 6)
plt.xlabel("Num of Epochs")
plt.ylabel("Accuracy")
plt.title("Simple NN Accuracy vs simple CNN Accuracy")
plt.legend(['simple NN','CNN'])

Image 10

Python
plt.figure(0)
plt.plot(snn_history['val_loss'],'r')
plt.plot(scnn.history['val_loss'],'g')
plt.xticks(np.arange(0, 11, 2.0))
plt.rcParams['figure.figsize'] = (8, 6)
plt.xlabel("Num of Epochs")
plt.ylabel("Loss")
plt.title("Simple NN Loss vs simple CNN Loss")
plt.legend(['simple NN','CNN'])

Image 11

Python
plt.figure(0)
plt.plot(snn_history['val_mean_squared_error'],'r')
plt.plot(scnn.history['val_mean_squared_error'],'g')
plt.xticks(np.arange(0, 11, 2.0))
plt.rcParams['figure.figsize'] = (8, 6)
plt.xlabel("Num of Epochs")
plt.ylabel("Mean Squared Error")
plt.title("Simple NN MSE vs simple CNN MSE")
plt.legend(['simple NN','CNN'])

Image 12

Final Conclusion

Unlike the previous model, the lines don't tend to become horizontal (the slope of the curve continues with a no near to zero value), so it is assumed that it is worthwhile to continue increasing the number of epochs to improve training. The convolutive network has allowed to improve the general accuracy and has generalized a little better than the regular neuronal network.

Points of Interest (but let's not be fooled...)

As everything that glitters is not gold, we have done the training of the model for 20 more epochs (from the already trained). If we see the results of the training, we will see the following:

Python
Train on 50000 samples, validate on 10000 samples
Epoch 1/20
50000/50000 [==============================] - 58s 1ms/step - loss: 3.0416 
- acc: 0.2552 - mean_squared_error: 0.0086 - val_loss: 3.2335 - val_acc: 0.2305 
- val_mean_squared_error: 0.0089
Epoch 2/20
50000/50000 [==============================] - 58s 1ms/step - loss: 2.9324 
- acc: 0.2783 - mean_squared_error: 0.0085 - val_loss: 3.1399 - val_acc: 0.2471 
- val_mean_squared_error: 0.0087
Epoch 3/20
 50000/50000 [==============================] - 58s 1ms/step - loss: 2.8245 
- acc: 0.3031 - mean_squared_error: 0.0083 - val_loss: 3.1052 - val_acc: 0.2639 
- val_mean_squared_error: 0.0086
Epoch 4/20
 50000/50000 [==============================] - 58s 1ms/step - loss: 2.7177 
- acc: 0.3186 - mean_squared_error: 0.0081 - val_loss: 3.0722 - val_acc: 0.2696 - val_mean_squared_error: 0.0086
Epoch 5/20
 50000/50000 [==============================] - 58s 1ms/step - loss: 2.6060 
- acc: 0.3416 - mean_squared_error: 0.0079 - val_loss: 2.9785 - val_acc: 0.2771 - val_mean_squared_error: 0.0084
Epoch 6/20
 50000/50000 [==============================] - 59s 1ms/step - loss: 2.4995 
- acc: 0.3613 - mean_squared_error: 0.0077 - val_loss: 3.0285 - val_acc: 0.2828 - val_mean_squared_error: 0.0085
Epoch 7/20
 50000/50000 [==============================] - 59s 1ms/step - loss: 2.3825 
- acc: 0.3873 - mean_squared_error: 0.0075 - val_loss: 3.0384 - val_acc: 0.2852 - val_mean_squared_error: 0.0085
Epoch 8/20
 50000/50000 [==============================] - 59s 1ms/step - loss: 2.2569 
- acc: 0.4119 - mean_squared_error: 0.0073 - val_loss: 3.1255 - val_acc: 0.2804 - val_mean_squared_error: 0.0086
Epoch 9/20
 50000/50000 [==============================] - 59s 1ms/step - loss: 2.1328 
- acc: 0.4352 - mean_squared_error: 0.0070 - val_loss: 3.0136 - val_acc: 0.2948 - val_mean_squared_error: 0.0084
Epoch 10/20
 50000/50000 [==============================] - 59s 1ms/step - loss: 2.0036 
- acc: 0.4689 - mean_squared_error: 0.0067 - val_loss: 3.0198 - val_acc: 0.2951 - val_mean_squared_error: 0.0085
Epoch 11/20
 50000/50000 [==============================] - 59s 1ms/step - loss: 1.8671 
- acc: 0.4922 - mean_squared_error: 0.0065 - val_loss: 3.1819 - val_acc: 0.2958 - val_mean_squared_error: 0.0086
Epoch 12/20
 50000/50000 [==============================] - 59s 1ms/step - loss: 1.7304 
- acc: 0.5227 - mean_squared_error: 0.0061 - val_loss: 3.2325 - val_acc: 0.3062 - val_mean_squared_error: 0.0087
Epoch 13/20
 50000/50000 [==============================] - 59s 1ms/step - loss: 1.5885 
- acc: 0.5527 - mean_squared_error: 0.0058 - val_loss: 3.2594 - val_acc: 0.3041 
- val_mean_squared_error: 0.0087
Epoch 14/20
 50000/50000 [==============================] - 59s 1ms/step - loss: 1.4592 
- acc: 0.5861 - mean_squared_error: 0.0055 - val_loss: 3.3133 - val_acc: 0.2987 
- val_mean_squared_error: 0.0088
Epoch 15/20
 50000/50000 [==============================] - 59s 1ms/step - loss: 1.3199 
- acc: 0.6170 - mean_squared_error: 0.0051 - val_loss: 3.5305 - val_acc: 0.3004 
- val_mean_squared_error: 0.0090
Epoch 16/20
 50000/50000 [==============================] - 59s 1ms/step - loss: 1.1907 
- acc: 0.6491 - mean_squared_error: 0.0047 - val_loss: 3.6840 - val_acc: 0.3080 
- val_mean_squared_error: 0.0091
Epoch 17/20
 50000/50000 [==============================] - 59s 1ms/step - loss: 1.0791 
- acc: 0.6787 - mean_squared_error: 0.0044 - val_loss: 3.8013 - val_acc: 0.2965 
- val_mean_squared_error: 0.0093
Epoch 18/20
 50000/50000 [==============================] - 59s 1ms/step - loss: 0.9594 
- acc: 0.7100 - mean_squared_error: 0.0040 - val_loss: 3.8901 - val_acc: 0.2967 
- val_mean_squared_error: 0.0094
Epoch 19/20
 50000/50000 [==============================] - 59s 1ms/step - loss: 0.8585 
- acc: 0.7362 - mean_squared_error: 0.0036 - val_loss: 4.0126 - val_acc: 0.2957 
- val_mean_squared_error: 0.0095
Epoch 20/20
 50000/50000 [==============================] - 59s 1ms/step - loss: 0.7647 
- acc: 0.7643 - mean_squared_error: 0.0033 - val_loss: 4.3311 - val_acc: 0.2954 
- val_mean_squared_error: 0.0099

Image 13Image 14

What Happened?

If the rate of success has increased with respect to the first 10 epochs, it happens that as the number of trainings increased, it began to generalize less. It can be seen that the loss function in the validation data reaches a minimum when it reaches a value of 3 and, from there, it increases. In the graph of accuracy, it indicates that the algorithm does not improve of a value of 30%. From here, the options are to use methods to regularize or change to a better model.

In the following article, we will present the ResNET Until next time!

History

  • 31st May, 2018: Initial version

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)